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ABSTRACT 

/•■-' 

%t«r paper is concerned with two sensitivity 
analysis problems on a network each arc of which 
is subject to one or to more than one reduction 
in its length. Suppose that a total number of 
s reductions can occur on the whole network« 
The two problems are the following: 

(i)  Which arc should be reduced such that 
the shortest route from source to any node i is 
reduced the most? 

(ii) Which arcs should be reduced such that 
the sum of all the shortest routes between each 
pair of nodes is reduced the most? 

In (i) we generalize Dantzig's algorithm concerning 
the shortest route from source to sink in a graph. 
In (ii) we generalize Dantzig's algorithm con- 
cerning the shortest routes between each pair of 
nodes in a directed graph. 
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CHAPTER I 

INTRODUCTION 

The purpose of this paper is to solve several sensitivity analysis problems 

in networks. 

A network is defined by a set of nodes i , a set of arcs  (i ,1 ) and a 
u v 

set of distances d(i ,i ) . The arcs are subject to one or to several reductions 

of their length. The problem consists in determining on which arcs the reductions 

should occur such that the shortest route is reduced the most. 

In Part II, we consider this problem for the shortest route from source to 

any node in a graph. Two cases have to be considered: 

- Each arc is subject to only one reduction, the total number of reductions 

being s . 

- Each arc Is subject to more than one reduction, say m , the total number 

of reductions being s . 

As an application of Part II, we indicate in the appendix the equivalence 

of this problem with the following sensitivity analysis on a maximum flow problem: 

The capacity of which arcs should be reduced such that the maximum flow from 

source to sink is reduced the most? We have considered three cases: 

- The one-commodity flow problem for a planar graph. 

- The two-commodity flow problem for an undirected graph. 

- The multi-commodity flow problem for a completely planar graph. 

Part III deals with the same sensitivity analysis problem corresponding to 

the sum of all the shortest routes between each pair of nodes in a graph. 

For each part an algorithm to solve the problem is given and short applications 

referring to transportation problems are indicated. 

Since a reduction of the length of an arc can be considered as an improvement 

on this arc, we will use, in the tollowing, these two words indifferently. 
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CHAPTER II 

SHORTEST ROUTE FROM SOURCE TO ANY NODE IN THE GRAPH 

11.1 Introduction 

Consider a network {N,A} , N being a set of nodes, A being a set of 

arcs. To each arc corresponds a length. There is the shortest path problem 

from source to any node in the graph. Suppose that the distance of each arc 

(iu>iv) can be reduced m times. The improvement problem is the following: 

On which arcs should a total number of s improvements occur such that the 

shortest route from the source to a certain node i in the graph is reduced the 

most? Several papers have already dealt with this problem, especially two by 

Richard Vollmer (Ref. 8,9). In (8) he considers the case where only one reduction 

can occur on each arc,and the remaining length is equal to zero. In (9) he 

considers the same case,but the remaining length can be any nonnegative number. 

This paper considers the possibility of more than one reduction on each arc, 

and the remaining lengths can take any nonnegative value. 

Using several special network properties, the following algorithm provides 
i 

the means for assessing very large numbers of transportation projects and 

project combinations without going through the usual complete traffic assignment 

process. It is capable of evaluating a large number of network alternatives in 

the same amount of time it would take to evaluate a single alternative using 

standard procedures and still obtain the same information at a comparable level 

of detail. 

11.2 Formulation of the Problem 

Let {N,A} be a network. N is a finite nonempty set of nodes i . A 

la a set of ordered pairs (i ,i ) of distinct nodes; each such pair is called 

an arc. Let n be the number of nodes in N and a the number of arcs in A . 
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One node in the network is distinguished:  node S called source.  A path in 

the network from S to node i  is a sequence of nodes: 

P(S,i ) = S,i.,i-, .... i .,i . 
w     12      w-1 w 

such that 

(s.y.dj.ij), .... (^.y eA . 

Consider a function d which attributes to each arc  (i ,1 ) a nonnegative 

number d(i ,i ) . Depending on the application this number represents the 

length, the cost, the time or the risk involved in traversing the arc  (i ,i ) . 

If the arc  (i ,i ) does not exist, put d(i ,i ) * °° . Whatever It stands 
u v u v 

for, we call in the following d(i ,i )  the length of the arc  (i ,i ) . The 

length of a path is defined by: 

w 
d[P(S,i )] - I    d(i. .,i.) with i - S 

w    . -   t—i t        o 
t=l 

Consider now a function b which attributes to each arc  (i ,i ) a set 
u v 

of nonnegative numbers b(i ,i ) .  Let b (i ,i ),b (i ,i ), ..., b (i ,i ) be 
u v u v     u v u v 

the elements of this set with: 

b°(i ,i ) - d(i ,i ) > bX(i ,i )>...> bm(i ,i ) > 0 
u  V       u  V        U  V u  V 

for all the arcs  (i ,i ) . 
u v 

m , the number of possible improvements, is not necessarily the same for 

each arc.  It can take the values 0,1, ..., s if s is the total number of 

improvements on the whole network. 

When the length of arc  (i ,i ) passes from d(i ,i ) to b (i ,i ) with 

a e {1,2, ..., m}» we say that the arc  (i ,i ) has been improved or reduced by 
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the quantity d(i,i)-b(i,i), and the reduced length or the improved 

length of arc (i^) is b^W • 

Suppose a total number of s improvements can occur on the whole network. 

If an arc is subject to only one improvement, we assume that the reduced length 

is b (i ,i ) . If an arc is subject to more than one improvement, we assume 

that the successive improvements are: 

b (i ,i ) bm(i ,i ) . 
u V U  V 

The improvement problem is the following: On which arcs should the s 

improvements occur such that the length of the shortest route from source to 

a certain node i is reduced the most? The following algorithm provides us 

with the solution for all the nodes i of the graph. 

II.3 Algorithm 

a) One improvement can occur on each arc. The total number of 

improvements is s . 

The first part provides us with the reduced length of the shortest path 

from S to any node i and with the corresponding arc improvements, but not 

with the shortest paths themselves. The second part will give us these paths. 

First Part: 

Since each arc is subject to only one improvement, the reduced length 

it br(i ,i ) for arc (i ,i ) . 
U  V U  V 

The algorithm is based on a double multi-stage decision process solved 

by dynamic programming methods.  It is developed in s successive steps 

(• being the total number of improvements that can occur on the whole network), 

Step r providing us with the lengths of the shortest routes from the source to 

any node i when r improvements occur and giving us the corresponding 
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improvements. Furthermore, each step is by itself a multi-stage decision 

process; it is developed in n successive stages (n being the total number 

of nodes in the graph), each stage giving us the length of the shortest route 

from the source to a certain node i and the corresponding arc improvements. 

The algorithm consists in a generalization of Dantzig's algorithm for the 

shortest route problem in a network.  (Ref. 2) 

Notation: 

- d(i ,i ) = initial length of arc (i ,i ) . 
u V ° u v 

- b (i ,i ) • improved length of arc (i ,i ) . 

- For each step we define a labelling function which attributes to each 

node i a nonnegative value representing the length of the shortest 

path from source to node i . For Step r the labelling function V (i) 

represents the length of the shortest path from source to node i 

when at most r improvements occur. 

It 
- N = set of nodes labelled in Step r after Stage k. 

-k k 
- N «* complementary set of N . 

Algorithm: 

Step 0: 

Shortest route without any improvement.     (Dantzig's algorithm.) 

- Stage 0: Suppose V (S) » 0 . The function V  is, therefore, defined 
o o 

on the set N ■ {S> . 
o 

- St-age 1: Find the node i(ra) which is at the shortest distance from the 

source S . The node i(m) is defined by: 
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V [!(■)] - min [d(S,i )] . 

i cN° 
y o 

Define N1 - N° U i(m) . o   o 

Stage k: Suppose we have defined the function V  on a set N 
oo 

of k nodes. Define the node i(m) by: 

k-1 

* Vo[i(m)] min  [V (i ) + d(i ,i )] ox    N x y 

i eN*"1 x o 

la*'1 
7   o 

(ix,iy) e oi^of1,^1) . 

Define N* - Nk_1 U i(m) . 

Go to Step 1 when all the nodes are labelled, i.e., when k - n 

Step 1: 

Shortest route with one improvement. 

- Stage 0: Suppose Vj(S) - 0 NJ - {S} , 

- Stage 1: Find the node i(m) which is at the shortest improved distance 

from the source S . Define the node i(m) by: 

V.[i(m)] - min [b1(S,i )] . 
* y ~o 

i EN, 
y i 

A cut (X,X) is a set of arcs (*u»iv) such that i e X , i e X , X and 

X being a partition of the nodes. 
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Define N7 » N? U i(m) . 

k-1 
Stage k: The function V.  is defined on a set )L   of k nodes. 

Define the node i(m) by: 

VjIKm)] «      min      \\i\£ + ^VV'W + b1^,! )1 

( 

i cN, 
y A 

(ix,iy) e cut (NJ""
1
,**"

1
) . 

Define Nk - N^"1 U i(m) . 

Go to Step 2 when k ■ n . 

Step r: 

Shortest route with   r improvements. 

- Stage 0: Suppose V (S) * 0 N° - {S} . 

k-1 - Stage k:    The function   V      is defined on the set    N of    k    nodes. 

Define node    i(m)    by: 

Vr[i(m)]  -      min      [V^lJ + d^.i^.V^^) + b1^.^)] 

5    x    r 

i eN 
y   r 

(ix,iy)  c cut  (Nk~\Nk *)   . 

Define    Nk - Nk_1 U i(m) 
r        r 

' ii ■ II—Mil 



pyi n ■  — -— — ■  ■ 

• 

Vh'M   k « n stop If r » 8 . Otherwise go to Step r + 1. 

Remark; 

1) If at any stage the determination of i(m) is not unique, choose 

arbitrarily one determination. 

2) If the arc (i ,i ) does not exist d(i ,i ) - • . If bX(i ,i ) 
' U  V U  V U  V 

exists, i.e., if b (i ,it) + • ; and if this arc is improved for a certain 

node, say i , that means that we add to the original set of arcs A a new 

arc (1 ,i ) with length b (i ,i ) and tha- this arc belongs to the 
U  V U  V 

shortest route from source to node 1 

Second Part: 

The previous algorithm provides us with the length of the shortest route 

from source S to any node i and with the corresponding arc improvements. Let 

us see now how to find the different shortest paths themselves. 

Consider Step s, Stage k. Let P [l(m)] denote the shortest path from 

S to node i(m) when 8 improvements occur. Depending on which arc the last 

improvement occurs, the definition of P [i(m)] is different: 

- If V Ji(m)] - V (i ) + d[i ,i(m)] i € N*"1 , the last arc of the 
8 8  X       X X    S 

path P [i(m)] is not improved but the improvement occur all before. 

Define P [i(m)] - P (i ) U i(m) . 
8 8  X 

- If V [i(m)] - V  (i ) + b1[i ,i(m)] i e Nk_1 , the last improvement 
8 8™X  X X X    S 

occurs on arc [i ,i(m)] and the other improvements occured before. 

Define P [i(m)] - P .(i ) U i(m) . 
8 8-1  X 

- If P [i(m)]  is not determined uniquely, choose arbitrarily one 
0 

determination. 

Each step provides us with a tree. Let us call T  the tree corresponding 
s 

to Step s. The tree T  gives also the shortest paths from S to any node i . 
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But for the other trees this is not necessarily true. 

Consider the successive trees T ,T. T . From the first part of the 
O  X       s 

algorithm we know on which arcs the improvements occur. Suppose that the last 

improvement is on (i ,ia) . It belongs necessarily to T . In order to find 
a     p 3 

the shortest path P (i) , trace back from i to i  on the tree T . From 
S S 8 

i trace back on T - until you reach another improved arc, etc... till you 

reach S . 

If we call P'(i ,i ) the path from i  to i  on the tree T ; and 
r x y x     y r 

if the first improvement occurs on arc (i ,i ) , we have: 
Y * 

Ps(1) " Vl(V U Kaa^  " W U p,(V'"> U ••* Ps-1('-" V U *;«*•« 

Example; 

In order to know at the end on which arc the improvement occurred, we 

indicate it on each label, r'or instance, V.[i , (i ,if)] means: the length 

of the shortest route from source to node i when one improvement occurs is 

V.(i) , and the improvement occurs on arc (i ,i ) . On each arc we indicate 

the initial and the reduced distance:  [d(i ,i ) , b (i ,i )] . 
U V       u v 

(8,5) (6,1) 

(14,13) (17,12) 
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[2,(5,l)]i 
[1,(5,3)] 

[9.a.4)]Qi»Äöl(5)  
X       I 
V 

N 

[5,(3,6)] 

[21,(6,7)] 

FIGURE 1: No Improvement 

To-- 

FIGURE 2: One Improvement 

Tl-~ 

Let us find now the shortest paths: For node 5 the Improvement occurs on 

the arc (2,5) . Hence, follow the tree T. till node 2 and then T  till 
x o 

S . So Px(5) - S , 2 , 5 . 

For node 7 the improvement is on the arc (6,7) . Follow T. till 

node 6 , then follow T  till S . So P, (7) - P (6) U 7 - S , 2 , 3 , 6 , 7 . 
o 10 

b) m improvements can occur on each arc  (m > 1) . The total number 

of improvements is s . 

First Part: 

The first Improvement on arc (i ,i ) leads to the reduced length b (i ,i ) . 
u V U  V 

The m-th improvement leads to the reduced length bm(i ,i ) . As previously, 

the algorithm is developed in s successive steps, Step r providing us with the 

minimal paths corresponding to a total number of most r improvements and giving 

* 
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us the arcs on which these improvement occur. 

Notation: 

11 

The same as in Part a. b (i ,i ), . 
u v 

improved lengths of arc (i ,i ) . 

.., b (i ,i ) are the successive 

Algorithm: 

Step 0: 

Shortest route without any improvement.    Same as in Section a. 

Step 1: 

Shortest route with one improvement.    Same as in Section a. 

Step r: 

(r > 1) shortest route with   r improvements. 

-  Stage 0: Suppose V (S) =0 N - {S} 

,k-l - Stage k: The function V  is defined on the set N   of k nodes. 

Define i(m) by: if r < m : 

Vr[i(m)] -  min  [V^y + d(±x,i ) , V^fc ) + bX(l ,i ), 
x y 

i cN 
x 

,k-l 
vo(ix) + b

r(ix,iy)] 

if r > m 

sk-1 
i EN 
y r 

(^(ix,iy) t  cut (NJT1,^"
1
) 
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VrU(m)] min  [Vr(ix) + d(ix,i ) , V^Cy + bX(ix,i ),..., 

„k-1 
x r 

1 eN*"1 
y r 

V  (i ) + bm(i ,i ) 
r-m x      x y 

'.   ■ 

(1 ,i ) e cut (Nk""1iii
k~1} x* y       r ' r ' 

or condensed in one expression: 

Vr[i(m)] -  min  [V^) + d(ix>i ) , V^UJ  + b1^,! ),.. 

i eN^1 
x r 

i a*'1 

y   r 

V  . ,  ,(i ) +b
min(r.™)(i t )] 

r-min(r.m) x x y 

(i ,i ) e cut (N1^1.^-1) . 
x y       r ' r 

Second Part: 

In the same way as in Section a we determine the shortest path from S 

to i . But now more than one improvement can occur on each arc. Thus if: 
■ 

V [i<m)J - V  (1 ) + bt[i ,i(m)] 1 e N^"1 , t < min(s.m) 
8 8**E  X X X    8       ~ 

t improvements occur on arc [i ,i(m)] and (s-t) occurred before. Define 
x 

P [i(m)] ■ P  (i ) U i(m) . Consider now the successive trees 
8 8-t  X 

T ,T. T . Suppose that the last improvement occurred on (i ,i0) and 
0X8 Op 

that there was only one improvement on that arc. It belongs necessarily to T . 
s 

As in Section a, in order to find the shortest path, trace back from i to i 

on the tree T . From i trace back on T , until you reach another improved 

arc, etc. till you reach S . 
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More generally, suppose we follow the tree T (0 < q < s) ; and we encounter 

an arc improved a times, say arc (i»,i ) , (o < min(q,m)) . Add this arc to dp       - 

P (i) and switch to the tree T   . Suppose the first improvement is on arc 

(i ,i ) 'and that there is only one improvement on this arc. If we call P'(i ,i ) ye J r x y 

the path from i  to i  on the tree T , we have: x     y r 

pg(i) = po(iy) ü p'(iy,...) u ... u pq_a(...,i3) u pqd3,...) 

U ... UP'_1(...,ia)Up;(ia,i). 

Example: 

s = m ■ 2 . In order to know at the end on which arcs the improvements 

occurred, we indicate it on each label. V.[i , (i ,i_) , (i ,i. )] means that 
*     et    g n 

the length of the shortest route from source to node i , when two improvements 

occur is V?(i) and that one improvement occurs on arc (i i.) and the other * e, f 
2 

on arc (i ,i, ) . VAi{i  ,if) ] means that both improvements occur on arc 

(i ,i_) . On each arc we indicate the initial and the improved lengths: 

[d(i ,i ) , b1(i ,i ) , b2(i ,i )] . 
u  V U  V U  V 

(^,2,2) (4.1.1) 

(8,5,A) 

(10,7,7) (17,12,11) 
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FIGURE 1:    No Improvement 

[2,(5,1)] [1,(5,3)] 

• 

[1,(5,3)] 

S
N      }     j/        [7,(5,1),(1,4)1  N        [7, (2,5X^1 

- 

[8,(6,7)1 

FIGURE 2: One Improvement 

^^[13,(2, 
2 

T- - 
"1 

FIGURE 3: Two improvements 

The shortest path from S to 7 is: 
■ 

P2(7) - PQ(2) U PJ(2,7) - (S.1,2) U (5,7) - S , 1 , 2 , 5 , 7 . 

The two improvements occur on arc (2,5) . 
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II.4 Application 

Consider a transportation network between two towns. A certain amount 

of money is available to improve the network, i.e., to decrease the distance or 

the travel time of several arcs. The improvement problem can be formulated like 

this: How should this money be spent or which arc lengths should be reduced 

such that the shortest route between the two towns is reduced the most? 
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CHAPTER III 

SHORTEST ROUTE BETWEEN EACH PAIR OF NODES IN A GRAPH 

111.1 Definition of the Problem 

The length of the shortest route Is sought between every pair of nodes 

in a directed graph (N,A) . Let {1,2 n} be the set of nodes In the 

graph and let a be the number of arcs. To each arc corresponds a set of 

nonnegative numbers: d(i,j) > b (i,j) > ... > bm(l,j) > 0 . d(l,j) Is the 

initial length of arc (l,j) if it exists, b (i,j) bm(i,j) are the 

lengths after the consecutive improvements in this order. If the arc (i,j) 

does not exist, put d(i,j) - <» . Put d(i,i) - 0 for all 1 . The fixed 

number 1 of possible improvements is not necessarily the same for each arc. 

Suppose s improvements can occur on the whole network? The Improvement 

problem is the following: Which arcs should be improved such that the sum of 

all the shortest routes between each pair of nodes Is reduced the most? 

111.2 Algorithm 

Dantzig's algorithm to find the .length of all the shortest routes between 

•ach pair of nods* in a directed graph is well known.  (Ref. 3.) Normally, to 

find the best improvements, we should apply Dantzig's algorithm as many times as 

there are possible combinations of improvements. For example, if r is the 

number of arcs and if s is greater than m for all the arcs, we would have 

I    1 possible solutions to compare. Obviously, this leads to too many 

computations. 

In order to reduce the number of matrices to be computed, we consider the 

consecutive nodes in the following order: Take node 1 . Then take the next 
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node in the set {2, ..., n} such that no loop Is created between this node 

and node 1 . Go on in avoiding as long as possible to form a loop. If It Is 

no longer possible to avoid it and if there is a choice between two nodes, take 

the node which creates the smallest number of loops. Go on until all the nodes 

have been considered. 

The way in which the algorithm works will show the obvious advantage of 

this procedure. 

We consider two cases: 

- Each arc can be improved once. 

- Each arc can be improved m times,  (m > 1) . 

a) Each arc can be improved once. The total number of improvements is 

s . b (i,j) is the improved distance of arc (i,j) . 

Notation: 

- a pxp matrix is a square matrix with p columns and p rows. 

i0,Jß 
- ((l»j))     is the matrix corresponding to the improvement on arc 

(i ,jg) . This improvement is obtained by finding the shortest improved 

route from i to j . 

- ((a ' (i,j))) is the matrix of the lengths of the shortest routes between 

each pair of nodes when 'he r improvements occur which make the sum of 

these lengths the shortest. 

r k 
- a ' (i,j) is the length of the shortest route from i to j at Stage k 

when r improvements occur. 

A loop is a sequence of arcs (ui»u2 u
t) » whatever the direction of 

these arcs may be, each arc u,  being connected to arc u, 1 by one of its 

extremities and to u, . by the other. Furthermore u.. and u  join at the 

same node. 
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r k 
~ °  (i»j) is the set of the lengths of the shortest routes between 

i and j corresponding to the new improvements introduced by Stage k 

when a total number of r improvements occur. 

r k 
- ß ' (i,j) is the set of the lengths of the shortest routes between i 

and j corresponding to each improvement considered in Stage k when a 

total number of r improvements occur. 
i 

It 
- N  is the set of k nodes for which the problem is solved. 

-k k 
- N  is the complementary set of N . 

Algorithm: 

The algorithm is developed in s steps, Step r providing us with the 

solution corresponding to r improvements. Suppose that the consecutive nodes 

are in the following order: 1,2, ..., n . 

Step 0: 

Find the matrix ((a ' (i,j))) of the lengths of the shortest routes 

between each pair of nodes without any improvement.     (Dantzig's algorithm.) 

- tage 1: N1 - {1} 

- Stage 2: N2 - {1,2} 

a°*2(l,2) - d(l,2)     a°,2(2,l) - d(2,l) 

- Stage k: Nk - {1,2 k} 

Assume that for the first k - 1 nodes 1, ..., k - 1 the optimal distances 

0 k-1 k-1 
•    (i»j) are known. These nodes form the set N   . Add a node k and 

find the optimal distances for the nodes 1, ..., k . 



• 

19 

For i = 1, ...» k - 1 the shortest route from k to 1 is: 

a°'k(k,i) - min[d(k,j) + a0,k-1(j,i)] j - 1, .... k - 1 . The minimal route 

from k to i starts with some arc (k,j) followed by a minimal route from 

j to i that does not go through k . The minimum of these alternatives is 

the solution. 

a0,k(i,k) = min[a0'k_1(i,j) + d(j,k)] j - 1, .... k - 1 . 

The minimal route ends with an arc (J,k) preceded by a minimal route from 

i to j  that does not go through k . The minimum of these alternatives is 

the solution. 

For i ■ 1, ..., k - 1 and j ■ 1, ..., k - 1 

a°'k(i,j) - min[a0'k_1(i,j) , a°*k(i,k) + a°'k(k,j)] . 

n k-1 
The entries in the (k - l)*(k - 1) matrix a '  (i,j) are replaced by 

[a°'k(i,k) + a0,k(k,j)] if the latter sum is smaller. If k = n go to Step 1. 

Otherwise, go to stage k + 1 . 

Step 1. 

Find the matrix ((a ' (i,j))) of all the lengths of the shortest routes 

with one length improvement  such that the sum of all these lengths is tl -s. 

smallest. We consider the consecutive nodes in the same order as in Step 0. 

- Stage 1: N1 - {1} . 

2 
- Stage 2: N * {1,2} . Consider the improved length from node 1 to 

node 2 .  It is b (1,2) . The improved length from 2 to 1 

is b (2,1) . Compute the two corresponding matrices: 
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/     0        ^(1,2)^ 2 1     /       °        d(1»2>\ 
((1.2))1»     -I ((2.1))''1- 

\d(2,l) 0      / \bl(21)       0      / 

- SLtage 3:    N    - {1,2,3}  .    Find  the shortest route from    1    to    3  .    We 

have: 

a1,n(l,3) * min[a°'n(l,2) + b1(2,3)   ; b1(l,3)   ;  a1,n(l,2) + d(2,3)] 

- mintd(l,2) + b1(2,3)   ; b1(l,3)   ; b1(l,2) + d(2,3)]   . 

Suppose the best improvement is on arc (i, ,j,) .  (i-i.jo) Is 

either (1,2) or (2,3) . Compute the matrices corresponding 

to this arc improvement. For instance, if (i^.j^) is (2,3) , 

2 3 
this matrix ((1,3)) '  is computed with the arc lengths: 

d(l,l) - 0 , 4(1,2) , d(l,3) 

d(2,l)    , d(2,2) - 0 , b1(2,3) 

d(3,l)    , d(3,2) , d(3,3) - 0 . 

We do the same for the shortest routes from 2 to 3 , from 3 

to 1 and from 3 to 2 . So we get the new improvements on 

the arcs (i2»J3) . (^»j^ » and (i3,J2) • For each new 

improvement, we have to compute the matrix with the distances 

d(i,j) except b (i,j) for the arc on which the improvement 

occurs. If the improvements of Stage 2 (improvement on arc 

(1,2) and on arc (2,1)) belong to the set of the new improvements, 

we are done. Go to Stage 4. If not, compire all the elements of 

13 1 
the set a *   (1,2) with b (1,2) . If one of these elements 

is smaller than b (1,2) , we are done. Go to Stage A. 

* 
* 
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If they are all greater than b (1,2) , we have to compute 

the 3x3 matrix corresponding to the Improvement on arc (1,2) . 

Do the same for the shortest route from 2 to 1 . 

- Stage k: We know all the (k - l)x(k - 1) matrices of stage k - 1 . 

Compute all the shortest routes with one improvement from every 

k-1 
node i e N " to node k and from node k to every node 

i E N 

For i = 1, ..., k - 1 the shortest route from i to k is: 

a1,k(i,k) - minfmin out of ß1,k_1(i,j) + d(j,k) , 

a°'k"1(i,j) + b^j.k)]   j =1, ..., k - 1 

1 k-1 
min out of ß '  (i,j) means the smallest element of the set 

1 k-1 
ß *  (i,j) . The shortest route from k to i is: 

a1,k(k,i) = min[d(k,j) + min out of ß1,k_1(j,i) , 

bV.j) + a°*k"1(j,i)]    j = 1, ..., k - 1 . 

Compute the matrices corresponding to the new improvements. For each improvement, 

we have a different matrix. Depending on whether an improvement was considered 

or not previously the formulas to find the shortest route from i to j 

(i * 1, ..., k - 1 and j ■ 1, .... k - 1) are slightly different. For an 

improvement which was never considered before the length of the shortest route is: 

a1,k(i,j) = min[a0'k_1(i,j) , a1,k(i,k) + a1,k(k,j)] . 

For an improvement which was already considered before in one or more of the 

previous steps the element (i,j) of the corresponding matrix is: 
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a1*k(i,j) - mln[a1,k"1(ifj) , a1,k(i,k) + a1,k(k,j)] 

1 k-1 
* '  (i»j) is the element of the matrix at stage k-1 corresponding to 

the same improvement we consider new. 

If all the improvements of stage k-1 belong to the set of the new 

improvements, we are done. If one does not belong to this set, say the 

improvement en  arc (i>»jj.) » consider the pair of nodes, say i , j  , 

for which this improvement gave the shortest distance p in stage k - 1 . 

1 k 
If any element of the set a ' (i ,j ) is smaller than p , we are done. 

z t 

We do not have to consider any more the improvement on arc (1A»J.I.) •  If not, 

we must compute the k*k matrix corresponding to this improvement. This 

comparison has only to be done after the first loop has been formed. Before 

we must consider necessarily at each stage the improvements of the previous 

stages.  If k ■ n go to the next step. Otherwise, go to stage k + 1 . 

Step r; 

Find the matrix ((ar,n(i,j))) of all the lengths of all the shortest 

routes with,   r length improvements  such that the sum of all these lengths is 

the smallest. 

We consider the consecutive nodes in the same order as in Step 0 and 1. 

The procedure is exactly the same as in Step 1. Let us write the formulas for 

Stage k: 

For i » i k-1 

ar,k(i,k) = min[min out of 8r,k_1(i,j) + d(j,k) , 

min out of ßr"1,k"1(i,j) + b^j.k)] 

J - 1, .... k-1 
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ar,k(k,i) = min[d(k,j) + min out of ßr,k_1(J,i) , 

b1(k,j) + min out of ßr~1,k"1(j,i)]   J - 1, .... k - 1 

For i ■ 1, ..., k - 1 and j " 1» ...,k-l. 

We have to consider two different cases. If the new improvement corresponding 

to the matrix we compute has never been considered before, we have: 

ar,k(i,j) = min[ar"1'k"1(i,j) , ar'k(i,k) + ar*k(k,j)] 

r-1 k-1 
a  *  (i,j) is the element of the matrix at step r - 1 , stage k-1 which 

corresponds to the same improvements as the r-1 first improvements we consider 

now. 

For an improvement which has already been considered in one of the previous 

r k 
stages, the element a ' (i,j) of the corresponding matrix is: 

ar*k(i,j) = min[ar'k_1(i,j) , ar,k(i,k) + ar'k(k,j) 

r k-1 
a '  (i»j) is the element of the matrix at Step r, stage k-1 which 

corresponds to the same improvements we consider now. 

We have to make the same comparisons as in Step 1 in order to determine 

the matrices we must compute.  If r • s , make the sum of the elements of the 

different matrices. The improvements which correspond to the matrix that gives 

the smallest sum are the solution of our problem. If r < s go to step r + 1 . 

Conclusion: 

The way the algorithm works makes the advantages of the special choices 

k-1 
of the consecutive nodes clearer. If by adding node k to the set N    in 

passing from stage k-1 to Stage k,we do not form any loop, only one 

improvement is added to the previous improvements.  It is the improvement on the 
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arc - p which joins node k to the set of the k - 1 first nodes. So the 

number of matrices to be computed increases only by one unit at this stage. 

But if we create a loop in adding node k to the first k - 1 nodes, two 

new improvements have to be considered, the first on the arc p and the second 

on the arc closing the loop. Hence, by this procedure the least possible number 

of matrices is added at each stage. 

For instance, in the following numerical example, we have to compute one 

matrix at Stage 2, two matrices at Stage 3, three matrices at Stage 4 and six 

matrices at Stage 5. 

Remark: 

If there is a tie in the relation (r,k) on Page 22, carry on the improvement 

from stage  (k - 1) and do not consider the new improvement. 

Example; 

(10,5) 

(1,0) 

(4,3) 

The consecutive nodes are: 1,2,5,3,4 



Step 0: 

- Stage 1: N1 - {1} 

- Stage 2: N* = {1,2} . The distance matrix is 

25 

i i    ro     2i 
2  L -   oJ 

- Stage 3: NJ - (1,2,5} . The distance matrix is 

1 0 2 6 

2 00 0 4 

5 . °° 00 0 

- Stage 4: NH = {1,2,5,3} . The distance matrix is 

1 

2 

5 

3 

2   6 

0   4 

co     0 

3 

5 

3 

00 

0 J 

- Stage 5: N3 = {1,2,5,3,4} . The distance matrix is 

1 0 2 6 5 7 " 

2 15 0 4 3 5 
r i ^ 13 0 16 i 

3 18 20 24 0 8 

4 .10 12 16 15 0. 
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Step 1: 

- 
- Stage 1: Nx - {1} 

- Stage 2: N2 - {1,2} 

1 

(d,2)) X»2 - 

- Stage 3: NJ - {1,2,5} . The shortest route from 1 to 5 is 

2 + 3 mln/ 1+4 
I iraprovem 
\on arc    (1,2)      on arc 
I Improvement Improvement     } 

(2,5)/ 

= 5 

There is a tie. Keep the improvement on (1,2) . The length 

of the shortest route from 2 to 5 is 3 . The corresponding 

improvement is on (2,5) . The distances from 5 to 1 and 

from 5 to 2 remain a> . The set of the new improvements is 

(1,2) , (2,5) . Hence, we have to consider the two matrices: 

(((1,2),(1,5))) 
1,2 

1 "0 1 5 

2 00 0 4 

3 00 00 0. 

((2,5)) 
2,5 

1 " 0 2 5 

2 00 0 3 

5 CO 00 0 

- Stage 4: N* - {1,2,5,3} . The length of the shortest route from i to 3 is 
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min/ 1+3  ,  2 + 2  ,    5 
(improv.    improv.    improv 
Von (1,2)  on (2,3)  on (1 ,3)1 

Keep the previous improvement on arc  (1,2) . The length 

of the shortest route from 2 to 3 is 2 . The Improvement 

Is on (2,3) . The distances from 5 to 3 , from 3 to 1 , 

from 3 to 2 and from 3 to 5 remain °° . The set of the 

new improvements is:  (1,2) , (2,3) . The corresponding 

matrices are: 

(((1,2),(1,5),(1,3))) 
1.2 ^ 

((2,3)) 
2,3 

1 2 5 3 

1 "0 1 5 4 * 

2 QO 0 4 3 

5 QO 00 0 OO 

3 m  00 00 oo 0- 

1 2 5 3 

1 -o 2 6 4-| 

2 00 0 4 2 

5 00 oo 0 00 

3 ■ « OO 00 0. 

The improvement on arc (2,5) of Stage 3 is not among the new improvements. 

It was found in determining the shortest route from 2 to 5 .  So we have to 

compare the old distance from 2 to 5 which is equal to 3 to the elements 

1 4 
of o ' (2,5) , i.e., 4 and 4 .  Since the old distance is shorter than the new 

ones, we have to consider the improvement on arc  (2,5) and compute the 

corresponding matrix. 
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((2,5)) 
2,5 

1 

i ro 
2 

5 

3 - 

2 

2 5 5 

3 3 

0 » 

oc Q 

Stage 5: N - {1,2,5,3,4} . The length of the shortest route from 

1 to 4 is 

mln(4 +8,5+5,5+1,6+0) =6. 

The corresponding improvement is on  (1,2) . 

The shortest distance from 2 to 4 is 4 . 

The a' ortest distance from 5 to 4 is 0 . 

The shortest distance from 3 to 4 is 5 . 

The shortest distance from 4 to 1 is 5 . 

The shortest distance from 4 to 2 is 7 . 

The shortest distance from 4 to 5 is 11 

The improvement is on (2,3) . 

The improvement is on (5,4) . 

The improvement is on (3,4) . 

The improvement is on (4,1) . 

The improvement is on (4,1) . 

The improvement is on (4,1) . 

The improvement is on (4,1) . The shortest distance from 4 to 3 is 11 

The set of the new improvements is:  (1,2) , (2,3) , (5,4) , (3,4) , (4,1) 

The corresponding matrices are: 

((5,4)) 
5,4 

1 r° 2 6 5 6 

2 14 0 4 3 4 

5 10 12 0 15 0 

3 18 20 24 0 8 

4 L lo 12 16 15 0 



I 

'(4,1),(4,2),(4,5),(4,3),\ 

(5,1),(5,2),(5,3),(3,1), 

k(3,2),(3,5),(2,l) 

>,1 . 

1 - 0 2 6 5 7 

2 10 0 4 3 5 

5 6 8 0 11 1 

3 13 15 19 0 8 

4 - 5 7 11 10 0 

(((1,2),(1,5),(1,3))) 
1.2 _ 

1 r° 1 5 4 6 

2 15 0 4 3 5 

5 11 12 0 15 1 

3 18 19 23 0 8 

4 -10 11 15 14 0 

((3,4)) 
3,4 

1 -0 2 6 5 7 

2 15 0 4 3 5 

5 11 13 0 16 1 

3 15 17 21 0 5 

4 -10 12 16 15 0 

(((2,3),(2,4))) 
2,3 

1 -0 2 6 4 7 

2 15 0 4 2 5 

5 11 13 0 15 1 

3 18 20 24 0 8 

4 -10 12 16 14 0 

29 

In all these matrices, the shortest distance from 2 to 5 is 4 . This is 

greater than the distance found in improving arc  (2,5) . Hence, we have to 

compute also the 5X5 matrix corresponding to this improvement. 
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((2,5)) 
2,5 

1 r0 2 5 5 6 

2 14 0 3 3 4 

5 11 13 0 16 1 

3 18 20 23 0 8 

4 Lio 12 15 15 0 

Let us find the sum of all the elements of these matrices. They are in the same 

order as the matrices have been written: 204, 156, 200, 199, 207, 204. The 

smallest sum is 156. That corresponds to the improvement on arc  (4,1) which 

gives the solution to our problem. 

b) Each arc can be improved m times  (m > 1) . m is not necessarily 

the same for each arc. 

The Steps 0 and 1 are exactly the same as in Case a. Consider Step r, 

Stage k.  In applying the same rules as ..previously, we have the formulas: 

For i = 1, ..., k - 1 

if r < m ar'k(i,k) - min[min out of 0r* ~1(i,j) + d(j,k) , 

min out of ßr_1,k"1(i,j) + b1(j,k) , 

a°'k"1(i,j) + br(j,k)]  j-1 k-1 

ar,k(k,i) 

m is the number of possible improvements 

on arc (j,k) . 

min[d(k,j) + min out of ßr,k-1(jfi) , 

b1(k,j) + min out of 0r_1,k~1(j,i) , 

br(k,j) + a°'k"1(j,i)]  j-1 k-1 
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m is the number of possible improvements 

on arc  (k,j) . 

if r > m ar,k(i,k) «= min[min out of ßr,k-1(i,j) + d(j,k) , 

min out of ßr,k_1(i,j) + bm(j,k)] 

j - 1 k - 1 

m is the number of possible improvements 

on arc  (j,k) . 

ar,k(k,i) = min[d(k,j) + min out of er,k_1(j,i) , 

■ 

bm(k,j) + min out of ßr"m'k_1(j,i)]  j = 1, .... k - 1 

The new improvements being known, nqw we have to compute the corresponding 

matrices. 

r k 
Consider the element a ' (i,j) . Suppose that a new improvements have 

r k 
been found either on arc  (j,k) or on arc  (k,j) . Then a ' (i,j) = 

min[ar"°,k"1(i,j) , ar,k(i,k) + ar'k(k,j)] ar-a'k"1(i,j) is the entry (i,j) 

of the matrix at step r - a , stage k - 1 which corresponds to the same 

improvements as the r - a first improvements we consider nowt 

If no new improvement is neither on arc  (k,j) nor on arc  (j,k) , we have: 

ar'k(i,j) = min[ar'k_1(i,j) , ar'k(i,k) + ar,k(k,j)] 

r k-1 
a '  (i,j)  is the elenent of the matrix at Step r, stage k-1 which 

corresponds to the same improvements we consider now. 

In order to know the matrices we have to compute, we must make the same 

comparisons as in Step 1 of Case a.  If r * s stop after this step. Otherwise 

go  to step    r + 1  . 

i       "'•"iVi Wrtiifa'fi 
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III.3 Applications 

Consider a network of post-delivery by trains or trucks.  In order to reduce 

the travel time between two cities, we can introduce a plane.  Between which 

cities should this plane be used such that the total delivery time is reduced 

the most? 

Bow to introduce toll on highways?    Consider a communication network which 

exists already or which has to be constructed.  In order to pay the construction, 

we want to introduce taxes on certain arcs.  Suppose that an amount of a(i,j) 

toll on arc (i,j) is equivalent for the user with an increase of ß(i,j) 

miles of the length of the arc  (i,j) . The problem is the following: On which 

axes should the taxes be introduced such that the sum of all the shortest routes 

is increased the least? 

Different hypotheses can be made: 

o) The total number of arcs on which we can introduce toll is fixed, say s . 

The algorithm is the same as in Section a, but now we have to consider increases 

of the lengths of the arcs instead of decreases. 

6) The total amount of taxes to be collected is fixed a priori, say M . 

For instance, M may be the equivalent of a certain percentage of the sum of all 

the shortest routes between each pair of nodes in the network. The algorithm is 

the same as in a) , but now we stop at Step r if the sum of the r first increases 

is greater or equal to M and the sum of the r - 1 first increases is less 

than M . 

Y) In a) and S3) we minimized the sum of all the travel times between 

each pair of nodes, but we did not take into account the amount of flow f(i,j) 

on each arc. Define now the travel time on each arc  (i,j) as the product of 

the number of cars using this arc in a certain period (for instance, in 24 hours), 
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and the average travel time of a car on this arc. When the total amount of toll 

is fixed a priori the algorithm is the same as in B)    but now we consider new 

distance-matrices the elements of which are f(i,j) * d(i,j) . 

3)  Suppose now that the travel time on each arc is a known increasing 

function of the flow on this arc. 

Consider first t (i,j) = travel time on arc  (i,j) independent of the 

flow on this arc.  Solve the problem according to the previous algorithm y)   . 

The solution provides us with a flow pattern f (i,j) which corresponds to 

a travel time t (i,j) . 

Consider now t (i,j) = —*    ~ * '■''  and solve according to the 

previous algorithm. 
2       3 

For the third iteration take t (i,j) = fc &»ii | t  ^»-D  , 
2 

Stop when fn(i,j) = fn-1(i,j) 
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APPENDIX 

APPLICATION C: THE ALGORITHM 

OF SECTION II TO THE MAXIMAL FLOW PROBLEM 

1.  One-commodity maximum flow problem.  The equivalence between a maximum 

flow problem in a primal planar graph G = (W,A)  (N is the set of nodes j) and 

the shortest route problem in its dual is well known (Ref. 1, 6, 7).  To each arc 

(j ,j )  in the primal corresponds an arc  (i ,i )  in the dual. To a cut in the 
x y x y 

primal corresponds a route from source to sink in the dual.  To the minimal cut in 

the primal (which is equal to the maximal flow) corresponds the shortest route from 

source to sink in the dual. 

Consider now a maximum flow problem on the graph G .  Suppose that to each 

arc  (j fj ) corresponds a set of nonnegative numbers c(j ,j ) . Let 
x y x y 

c°(jv,j ),c (j.j ), •-., c*(J ,J )  be the elements of this set with 
x  y     x  y x  y 

c°üx.jy) > cl<VV - •" - cm(jx'V - ° for a11  (VV • when the caPacity 
of arc  (j.j )  passes from c (J .j )  to c (j .j ) with a e {1, ..., tn} , we 

x  y x  y x  y 
n r» 

say that the capacity of arc  (j ,j )  is reduced by c (j ,j ) - c (j ,j ) and 
x y x y      x y 

that the reduced capacity is c (j ,j ) . 
x y 

Suppose s capacity-decreases can occur on the whole network.  If an arc is 

subject to only one decrease, the reduced length is c (j ,j ) .  If an arc is 
x y 

subject to more than one capacity-decrease, the successive reduced capacities are 

The sensitivity-analysis problem is the following: On which arcs should the 

s improvements occur such that the maximal flow is reduced the most? 

To solve this problem, we consider the improvement problem on the dual graph 

G - (N,A) . To the arc (j ,j ) of G corresponds the arc  (i ,i ) of G . To 
x y x y 

the successive capacities c (j ,j ),..., c (j ,j ) of the primal correspond the 
x y x y 

successive arc lengths d(i ,i ),..., b (i ,i ) of the dual.  So the sensitivity- 
x y x y 
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analysis on the primal is equivalent to the improvement problem in the dual: On 

which arcs should the s improvements occur such that the length of the shortest 

path from source to sink is reduced the most? If only one capacity-decrease can 

occur on each arc of the primal, we consider only one length improvement on each 

arc of the dual. If m capacity-decreases can occur on each arc of the primal, 

we consider m length improvements on each arc of the dual. The solution of the 

dual problem provides us with the shortest improved path from source to sink and 

tells us on which arcs (i ,i ) the improvements occurred. To the shortest path 

corresponds the new minimal cut in the primal and the capacity-decreases occur on 

the arcs (j ,j ) which intersect the improved dual arcs. 

2. Two-commcdity maximum flow prcblea. Consider an undirected network with 

two sources and two sinks. The two-commodity problem consists in maximizing the 

sum of the flows of two different commodities, commodity 1 being shipped from source 

* * 
S.  to sink S. and commodity 2 from S? to S„ . 

After the following adaptation, the sensitivity-analysis problem on the two- 

commodity flow problem can be made in the same way as for the one-commodity problem. 

T. C. Hu has shown that the maximal flow is equal to a certain minimal cut 

(Ref. 4). The cut here is defined as a set of arcs separating at the same time 

S. from S. and S- from S_ . Hence the minimal cut can be one of the two 

following sorts: Either it separates S- and S_ from S. and S. or S. and 

*       * 
S. from S.. and S« . Thus if we are only interested in the value of the maximum 

flow (and not in the flow distribution on the different arcs), we can find this 

value in the following way: 

- Condense S. and S_ into a single node W and S. and S„ into a 

* „ 
single node W . In the condensed graph J    , consider W as source and 

W  as sink. Find the minimal cut the value of which is a . 

* * 
- Condense S. and S. into a single node Z and S.    and S_ into a single 

* * 
node Z . In the condensed graph G , consider Z as source and Z  as 
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sink.  Find the minimal cut the value of which is $ . 

- The maximum flow for the two-commodity problem is min (a,6) . 

Sensitivity-analysis.  Consider the two duals G  (corresponding to G ) and 

G  (corresponding to G ) . Make the sensitivity-analysis on both graphs. We get 
z z 

two values of the reduced maximum flow: o1  and ß- . Take min (a.,ß ) and 

keep the corresponding capacity-decreases. 

Remark: 

Unfortunately, this very easy method does only work in the case where the two 

condensed networks are planar. 

Example: 
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1.  Put S.  and S, together. 

*      * 
Put S. and S_ together. 

sra 

i 

i 

i 

i 

i 

i 

Primal Graph 6 ■ 

Dual Graph G   - 



The dual graph is: 

n 
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x 2 
s 

6, 

8 

Length of the shortest route from source to sink = value of the minimal cut in the 

primal ■ 8. 

Chain:  (Sw>3) , (3,8) , (8,S*) . 

Minimal cut:  (6',7') , (3',8') , (<*',5')   . 
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2. Put S.  and S  together. 

Put S.  and S„ together. 

Primal Graph G - 

Dual Graph G   * 



The dual graph  is: 

A.7 

^ A 

X^-N8 —0 

Length of the shortest route from source to sink =« minimal cut in the primal ■ 10. 

Chain:  (S3) , (3,6) , (6,9) , (9,S*) . 

Minimal cut:  (3*,2') , (3\6') , (7',8') , (8',Z*) . 

Since 8 < 10 , the minimal cut is  (6',7') , (3',8') , W',5')   . 

The sensitivity analysis can now be made on the two dual graphs as it has been 

described in Part II. 



t^- 
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3. Multi-commodity maximum flow problem for a completely planar graph. 

M. Sakarovitch (Ref. 5) defines a completely planar graph as follows:  The graph G 

is completely pianar if 

(i)  The graph obtained from graph G by linking a super source to the 

sources of all the commodities and linking the sinks to a super sink is 

planar. 

(ii) The graph obtained from G by adding the arcs  (S.,S.), ..., (S ,S ) 
11        n n 

is planar,  (n is the number of commodities considered.) 

In (5), Sakarovitch gives an algorithm to solve the multi-commodity problem 

in this special case: 
it 

"Begin by sending flow from S..  to S.  following the general one-commodity 

maximum flow algorithm. Let F  be the quantity of flow thus sent. Define 

Qx - (1) . We have: 

F1 - c(SrS*) . 

* 
Then send flow from S2 to S. using the same algorithm in the network of 

2 
remaining capacities; let F  be the amount of flow thus sent; go on sending flow 

from S_ to S_ in the network of remaining capacities and so on." 

Sakarovitch shows that this construction leads to a maximal integer multi- 

commodity flow and to the determination of a partition h for which 

F1 + ... + Fk ' l     C(SQ *SQ ) Q.eh  \ wi yi/ 
«i 

For an n-commodity problem there exist 2    partitions h . To each 

partition h  corresponds the cut H . 
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The sensitivity-analysis  can be done in the same way as for the 2-commodity 

case. 

Consider the ;!    possible partitions h.,A  and B. being the elements of 

the partition h . Condense the elements of A  in a unique source and those of 

B  in a unique sink. To the new graph G. , corresponds the dual graph G . 

Find the shortest route from source to sink on G  (length ■ ct ) which provides us 

with the cut H . Min (a ) is the value of the maximal flow and the 

corresponding cut H  is the minimal cut. 

The sensitivity-analysis is done on the 2    dual graphs G  each of which 

provides us with a final shortest route the length of which is 3. . Take 

min (ß ) and the corresponding capacity-decreases solve the problem. 
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